• Han, Q., Guo, Q., Korpelainen, H., Niinemets, U. &amp ; Li, C. Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiol. 39, 1855-1866 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Pérez-Luna, A. et al. Grafting in conifers : a review. Pak. J. Bot. 52, 1369-1378 (2020).

    Article

    Google Scholar

  • Larson, R. A. Grafting : a review of basics as well as special problems associated with conifer grafting. Comb. Proc. int. Plant Propag. Soc. 56, 318-322 (2006).

    Google Scholar

  • Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015-1025 (2021).

    Article
    PubMed

    Google Scholar

  • Li, H. T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470 (2019).

    Article
    PubMed

    Google Scholar

  • Pérez-Luna, A. et al. Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Les forêts 10, 112 (2019).

    Article

    Google Scholar

  • Cortizo, M. et al. Micrografting of mature stone pine (Pinus pinea L.). Ann. For. Sci. 61, 843-845 (2004).

    Article

    Google Scholar

  • Mencuccini, M., Martínez-Vilalta, J., Hamid, H. A., Korakaki, E. &amp ; Vanderklein, D. Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol. 27, 463-473 (2007).

    Article
    PubMed

    Google Scholar

  • Jayawickrama, K., Jett, J. &amp ; McKeand, S. Rootstock effects in grafted conifers : a review. Nouveau pour. 5, 157-173 (1991).

    Article

    Google Scholar

  • Goldschmidt, E. E. Plant grafting : new mechanisms, evolutionary implications. Front Plant Sci. 5, 1-9 (2014).

    Article

    Google Scholar

  • Mudge, K., Janick, J., Scofield, S. &amp ; Goldschmidt, E. E. A History of Grafting. Horticultural reviews. 35, 437-493 (2009).

    Article

    Google Scholar

  • Melnyk, C. W. Plant grafting : insights into tissue regeneration. Régénération. 4, 3-14 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Moing, A., Salesses, G. &amp ; Saglio, P. Growth and the composition and transport of carbohydrate in compatible and incompatible peach/plum grafts. Tree Physiol. 3, 345-354 (1987).

    Article
    CAS
    PubMed

    Google Scholar

  • Notaguchi, M. et al. Cell-cell adhesion in plant grafting is facilitated by β-1, 4-glucanases. Science 369, 698-702 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Kurotani, K. I. et al. Discovery of the interfamily grafting capacity of Petunia, a floricultural species. Hortic. Res. 9, uhab056 (2022).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Reeves, G. et al. Monocotyledonous plants graft at the embryonic root-shoot interface. Nature 602, 280-286 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Melnyk, C. W., Schuster, C., Leyser, O. &amp ; Meyerowitz, E. M. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol. 25, 1306-1318 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fragoso, V., Goddard, H., Baldwin, I. T. &amp ; Kim, S.-G. Une méthode de microgreffage simple et efficace pour des cellules de l’épithélium transformées de manière stable. Nicotiana attenuata afin d’examiner la signalisation entre la pousse et la racine. Méthodes pour les plantes 7, 1-8 (2011).

    Article

    Google Scholar

  • Turnbull, C. G., Booker, J. P. &amp ; Leyser, H. M. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255-262 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Lindsay, D., Yeoman, M. &amp ; Brown, R. An analysis of the development of the graft union in Lycopersicon esculentum. Ann. Bot. 38, 639-646 (1974).

    Article

    Google Scholar

  • Moore, R. &amp ; Walker, D. B. Studies of vegetative compatibility-incompatibility in higher plants. I. Étude structurale d’une autogreffe compatible chez l’espèce Sedum telephoides (Crassulaceae). Am. J. Bot. 68, 820-830 (1981).

    Google Scholar

  • Sala, K., Karcz, J., Rypień, A. &amp ; Kurczyńska, E. U. Unmethyl-esterified homogalacturonan and extensins seal Arabidopsis l’union des greffons. BMC Plant Biol. 19, 1-16 (2019).

    Article

    Google Scholar

  • Melnyk, C. W. et al. Transcriptome dynamics at Arabidopsis Les jonctions entre greffons révèlent un mécanisme de reconnaissance intertissulaire qui active la régénération vasculaire. Proc. Natl Acad. Sci. USA 115, E2447-E2456 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, A. et al. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Curr. Biol. 32, 1883-1894 e7 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Canher, B. et al. The regeneration factors ERF114 and ERF115 regulate auxin-mediated lateral root development in response to mechanical cues. Mol. Plant 15, 1543-1557 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Heyman, J. et al. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nat. Plants 2, 16165 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Iwase, A. et al. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytol. 232, 734-752 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bisht, A. et al. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis racines. Plant Cell 35, 1513-1531 (2023).

    Article
    PubMed

    Google Scholar

  • Canher, B. et al. Rocks in the auxin stream : wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proc. Natl Acad. Sci. USA 117, 16667-16677 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Matsuoka, K. et al. Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of hypocotyles d’Arabidopsis. Plant Cell Physiol. 57, 2620-2631 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Ikeuchi, M. et al. Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiol. 188, 425-441 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Iwase, A. et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21, 508-514 (2011).

    Article
    CAS
    PubMed

    Google Scholar

  • Pina, A. &amp ; Errea, P. A review of new advances in mechanism of graft compatibility-incompatibility. Sci. Hortic. 106, 1-11 (2005).

    Article

    Google Scholar

  • Ran, J. H., Shen, T. T., Wu, H., Gong, X. &amp ; Wang, X. Q. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol. Phylogenet. Evol. 129, 106-116 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Thomas, H., Van den Broeck, L., Spurney, R., Sozzani, R. &amp ; Frank, M. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation. Plant Cell 34, 535-556 (2022).

    Article
    PubMed

    Google Scholar

  • Aloni, R., Aloni, E., Langhans, M. &amp ; Ullrich, C. Role of cytokinin and auxin in shaping root architecture : regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883-893 (2006).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Aloni, R. L’induction des tissus vasculaires par l’auxine et la cytokinine. Hormones végétales 531-546 (1995).

  • Kawakatsu, Y., Sawai, Y., Kurotani, K.-I., Shiratake, K. &amp ; Notaguchi, M. An in vitro grafting method to quantify mechanical forces of adhering tissues. Plant Biotechnol. 37, 451-458 (2020).

    Article
    CAS

    Google Scholar

  • Melnyk, C. W. &amp ; Meyerowitz, E. M. Plant grafting. Curr. Biol. 25, R183-R188 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Rouphael, Y., Schwarz, D., Krumbein, A. &amp ; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 127, 172-179 (2010).

    Article

    Google Scholar

  • Wang, X. Q. &amp ; Ran, J. H. Evolution and biogeography of gymnosperms. Mol. Phylogenet. Evol. 75, 24-40 (2014).

    Article
    PubMed

    Google Scholar

  • Andrews, P. K. &amp ; Marquez, C. S. Graft incompatibility. Hortic. Rev. 15, 183-232 (2010).

    Google Scholar

  • Lohar, D. P. &amp ; VandenBosch, K. A. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. J. Exp. Bot. 56, 1643-1650 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Cookson, S. J. et al. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. J. Exp. Bot. 64, 2997-3008 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cui, Q., Xie, L., Dong, C., Gao, L. &amp ; Shang, Q. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Sci. 304, 110803 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Sundström, J. et al. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) sont homologues aux gènes homéotiques floraux de classe B chez les angiospermes. Dev. Genet. 25, 253-266 (1999).

    Article
    PubMed

    Google Scholar

  • Tandre, K., Svenson, M., Svensson, M. E. &amp ; Engström, P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15, 615-623 (1998).

    Article
    CAS
    PubMed

    Google Scholar

  • Ma, H. S., Liang, D., Shuai, P., Xia, X. L. &amp ; Yin, W. L. La protéine GRAS SCL7 du peuplier, inductible au sel et à la sécheresse, confère la tolérance au sel et à la sécheresse chez les plantes. Arabidopsis thaliana. J. Exp. Bot. 61, 4011-4019 (2010).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mouradov, A. et al. NEEDLY, a Pinus radiata orthologue des gènes FLORICAULA/LEAFY, exprimé dans les méristèmes reproducteurs et végétatifs. Proc. Natl Acad. Sci. USA 95, 6537-6542 (1998).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sundås-Larsson, A., Svenson, M., Liao, H. &amp ; Engström, P. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc. Natl Acad. Sci. USA 95, 15118-15122 (1998).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Rutledge, R. et al. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) qui produit des conversions homéotiques florales lorsqu’elle est exprimée dans l’environnement de l Arabidopsis. Plant J. 15, 625-634 (1998).

    Article
    CAS
    PubMed

    Google Scholar

  • Azevedo, H., Lino-Neto, T. &amp ; Tavares, R. M. An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Mol. Biol. Rep. 21, 333-338 (2003).

    Article
    CAS

    Google Scholar

  • Siligato, R. et al. MultiSite Gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol. 170, 627-641 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kalmbach, L. et al. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. Curr. Biol. 33, 926–939.e9 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Ursache, R., Andersen, T. G., Marhavy, P. &amp ; Geldner, N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 93, 399-412 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Mähönen, A. P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis racine. Genes Dev. 14, 2938-2943 (2000).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Nisar, N., Verma, S., Pogson, B. J. &amp ; Cazzonelli, C. I. Inflorescence stem grafting made easy in Arabidopsis. Méthodes pour les plantes 8, 1-9 (2012).

    Article

    Google Scholar

  • Matsuoka, K. et al. Wound-inducible ANAC071 and ANAC096 transcription factors promote cambial cell formation in incised Arabidopsis tiges fleuries. Commun. Biol. 4, 369 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Schindelin, J. et al. Fiji : an open-source platform for biological-image analysis. Nat. Methods 9, 676-682 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Delhomme, N. et al. Guidelines for RNA-seq data analysis. Epigenesys Protoc. 67, 1-24 (2014).

    Google Scholar

  • Kopylova, E., Noé, L. &amp ; Touzet, H. SortMeRNA : fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatique 28, 3211-3217 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, S., Zhou, Y., Chen, Y. &amp ; Gu, J. fastp : an ultra-fast all-in-one FASTQ preprocessor. Bioinformatique 34, i884-i890 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Dobin, A. et al. STAR : ultrafast universal RNA-seq aligner. Bioinformatique 29, 15-21 (2013).

    Article
    CAS
    PubMed

    Google Scholar

  • Anders, S., Pyl, P. T. &amp ; Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatique 31, 166-169 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Love, M. I., Huber, W. &amp ; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1-21 (2014).

    Article

    Google Scholar

  • Kumar, L. &amp ; Futschik, M. E. Mfuzz : a software package for soft clustering of microarray data. Bioinformation 2, 5 (2007).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Langfelder, P. &amp ; Horvath, S. WGCNA : an R package for weighted correlation network analysis. BMC Bioinform. 9, 1-13 (2008).

    Article

    Google Scholar

  • Shannon, P. et al. Cytoscape : a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tamura, K., Stecher, G. &amp ; Kumar, S. MEGA11 : molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022-3027 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, C. et al. TBtools : an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202 (2020).

    Article
    CAS
    PubMed

    Google Scholar